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Abstract. A parallel stochastic algorithm is presented for solving the linearly constrained concave 
global minimization problem. The algorithm is a multistart method and makes use of a Bayesian 
stopping rule to identify the global minimum with high probability. Computational results are 
presented for more than 200 problems on a Cray X-MP EA/464 supercomputer. 
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1. Introduction 

This paper presents a computational method for finding a solution to the problem 

global min ~(x) (GP) 
xEf~ 

where ¢(x) is an arbitrary differentiable strictly concave function, O = (x: A x  <- 
b, x 1> 0} is assumed to be nonempty and bounded, and x E R", A E R m×n, and 
b E R  m. 

Problem (GP) is a constrained combinatorial optimization problem for which 
many well known problems are special cases. For example, the concave quadratic 
global minimization problem is a special case of problem (GP) for which 
~(x)  = ( 1 / 2 ) x t Q x  + ctx where Q E R n×" is symmetric and negative definite. This 
concave quadratic global minimization problem is known to be NP-hard (Phillips 
1988), and hence it follows that problem (GP) is NP-hard. From a computational 
viewpoint, this means that, in the worst case, the computing time required to 
obtain a solution will grow exponentially with the size of the problem (in terms of 
the number of variables and constraints). An important property of problem 
(GP),  which is basic to many solution methods (Phillips 1988), is that the global 
minimum point is always found at a vertex of the convex polytope O. In facL as a 
consequence of the strict concavity of ~(x) over 12, every local minimum point 
must also be a vertex of l~ (Phillips 1988). For this reason, linear programming is 
an essential part of any computational algorithm to solve problem (GP). 

A substantial literature exists describing applications of this global minimization 
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problem. The recent monograph by Pardalos and Rosen (1987) contains refer- 
ences to many of these applications. There has also been an active research effort 
on computational methods for solving problem (GP), and many of these methods 
are summarized in Pardalos and Rosen (1986) and Mockus (1989). Most methods 
are restricted to a certain class of concave functions, including quadratic functions 
(Phillips and Rosen 1988), nonconvex separable functions (Falk and Soland 1969, 
Phillips and Rosen 1990), and factorable functions (McCormick 1976). Only a few 
methods have been developed for solving the general constrained concave 
minimization problem (Tuy 1964, Falk and Hoffman 1976, Horst 1984). None of 
these general methods, however, seem to be suitable for the efficient computa- 
tional solution of problems with more than 25 variables. More recently, Hansen, 
Jaumard, and Lu (1991) have proposed a method for more general classes of 
nonconvex minimization problems which include concave problems as special 
cases. 

This paper presents a stochastic approach for solving the linearly constrained 
global minimization problem. This paper continues the work begun by Rosen and 
van Vliet (1987) in which results are presented for a preliminary version of the 
method on the Cray 2 and the NCUBE-7 hypercube. The approach presented is 
based on a multistart technique (Rinnooy Kan and Timmer 1984, 1987). This 
technique repeatedly employs two phases during the solution process: a global 
and a local phase. In the global phase, a random search direction is selected and 
used to obtain a starting point from which the local phase may begin. The local 
phase then attemPts to find a local minimum by starting from this point. Since the 
global minimum is generally unknown, the objective of a multistart method is to 
find all of the existing local minima for the problem. But, since the total number 
of local minima is also unknown, an optimal Bayesian estimate of the number of 
local minima must be used to terminate the method. This Bayesian stopping rule 
(Boender and Rinnooy Kan 1987) indicates that, with very high probability, all of 
the local minima have been found; hence, the one with the lowest function value 
will be the global minimum. 

2. Theory and Algorithm 

Existing multistart methods have considered only the unconstrained global 
minimization problem (Byrd et al. 1990). This paper considers the case where the 
feasible domain is a nonempty and bounded polyhedron 1). Since it is known that 
the global minimum point will occur at a vertex of 1~, a local search procedure 
using linear programming and based on the ideas in Frank and Wolfe (1956) will 
be presented. This procedure is based on the following theorem: 

T H E O R E M  1. Let  v be a vertex o f  1). If, starting f r o m  vertex v, v '  solves the 
linear program 

min Vq~(vf(x - v) (LV) 
x E O  
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then either (1) v = v '  and hence v '  is a K a r u s h - K u h n -  Tucker point for  problem 

(GP) ,  or (2) v ~ v '  and hence ~ (v ' )  < ~o(v). 

Proof. Since the vertex v' solves the linear program (LP),  then the Karush-  
Kuhn-Tucker  conditions for problem (LP) are satisfied at v'. Specifically, there 
exists A E R m and be E R" such that 

(1) ; ~ > 0 ,  be~>0, 
(2) A v '  ~ b  , v '>~O, 
(3) b e t v ' = 0 ,  ~tt(Av ' - b ) = O ,  and 

(4) r e ( v )  + At;t - be = O. 

If v - - v ' ,  then V ¢ ( v ' ) +  At~t -be  = O, which along with conditions 1, 2, and 3 
satisfy the Karush-Kuhn-Tucker  conditions for problem (GP) at v'. Hence, if 
v --- v' then v' is a Karush-Kuhn-Tucker  point for problem (GP). 

If v ~ v' then v cannot be optimal for problem (LP) so that 

- v )  < - v )  = 0 .  

In addition, ~(x) is concave over l~ so that ~ (v ' ) -~ (v )~<V~(v) t (v  ' -  v ) < 0 .  
That  is, ~(v ' )  < ~(v). [] 

Note that in the previous theorem, if v = v' then v' is a Karush-Kuhn-Tucker  
point for problem (GP),  but not necessarily a local minimum for problem (GP). 
For example, consider the function ~o(x, y ) =  - x  2 -  ( y -  2) with ~ defined by 
0 ~< x ~< 1, 0 ~< y, and x + y ~< 2. The global minimum of q~ over f~ occurs at the 
vertex (1, 0). The two vertices (0, 2) and (0, 0) of f~ are both Karush -Kuhn-  
Tucker points of ~, but neither is a local minimum. In fact, the vertex (0, 2) is the 
global m a x i m u m  of ~. The final vertex (1, 1) of l~ is not even a Ka rush -Kuhn-  
Tucker point of ~. It is clear from this example that only in the case when the 
gradient of q~ at v is identically 0 or is orthogonal to the active constraints at v will 
the vertex v satisfy the Karush-Kuhn-Tucker  conditions but not necessarily be a 
local minimum. The following corollary is related to theorem 1 and will be useful 
in the proof of Theorem 2 to be presented below. 

C O R O L L A R Y  1. I f  the vertex v E I2  is a K a r u s h - K u h n - T u c k e r  point  for  

problem (GP),  then v is optimal for  the linear program 

min V~(v)'(x - v) .  
x ~  

Proof. Let x E fL Applying the Karush-Kuhn-Tucker  conditions listed in the 
proof of theorem 1, Vq~(v)t(x - v) = (be - A'~,)'(x - v) = be~x - )t~Ax + Atb = betx - 
A t ( A x -  b). But x> /0  and Ax<~ b (since x E f t ) ,  and /~/>0 and At>0 so that 
V~(v) t (x-  v) i>0 = V ~ ( v ) t ( v -  v). Hence, v is optimal for the linear program 
(LP). [] 

The stochastic algorithm to be presented in this paper is based on solving a 
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sequence of linear programs of the form of problem (LP) above. Since the 
solution to problem (LP) need only be a Ka rush -K u h n -Tu ck e r  point for problem 
(GP)  and not  necessarily a local minimum, then the local phase to be applied will 
a t tempt  to find all of the existing Ka rush -Kuhn-Tu ck e r  vertices (a superset of the 
set of all local minimum vertices) for problem (GP) .  Since the polytope 12 has 
only a finite number  of vertices, then the total number of K a r u s h - K u h n - T u c k e r  
vertices of 1% (and hence also the total number of local minimum vertices of f~) is 
finite. Let  K = {v~, v2, • • •,  Vk} represent this set of K a r u s h - K u h n - T u c k e r  ver- 
tices of f~ for problem (GP) .  

D E F I N I T I O N .  The region o f  attraction of a K a r u s h - K u h n - T u c k e r  vertex v E K, 
denoted  by R(v) ,  is the set of all search directions u E R n such that the following 
local search procedure  results in obtaining the vertex o: 

1. Set j := 1 and solve the linear program 

m i n  1Atx 
x E ~  

to get the vertex z 0. 
2. Starting from vertex zj_l solve the linear program 

min Vq~(zj_l)t(x - zj_x) 
xGft 

to get the vertex zj. 
3. If q~(zj)¢ q~(Zi_l) then set ] := ] + 1 and go to step (2). Otherwise, stop. 

T H E O R E M  2. The regions of  attraction R(Vl), R(o2),... ,R(o,~) are nonempty 
and R(Vl) U R(v2) U " "  U R(vK) =R".  

Proof. Let  u E R". Theorem 1 guarantees that the solution of step (2) satisfies 
either zj = zz_ 1 (i.e. q~(zj) = q~(zi_l) ) in which case zj ~ K, or zj v a zj_ 1 in which 
case q~(zj) < ~p(zj_~ ). But q~(x) is bounded below on ~ by q~*, the global minimum 
function value, so that the above local search procedure must halt in a finite 
number  of steps at some zj -= vi E K. Hence,  u @ R(v~), so that R(Vl) U R(v2) U 
• "" U R(vK) = R n. 

To show that each region R(vi)  is nonempty,  consider any search direction 
u ~ R" which lies in the nonempty positive cone generated by the set of linearly 
independent  normal vectors of the active constraints at v~. For any such search 
direction, the solution of the linear program 

min utx 
x ~  

is the K a r u s h - K u h n - T u c k e r  vertex v i. Noting that z 0 -- vi and applying corollary 
1, vi is optimal for the linear program 

min V~o(z0)t(x - z0) 

Hence  R(vi)  ~ ~ .  [] 
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The  following theorem states that if a large enough sample of random search 
directions are chosen from a uniform distribution, then every K a r u s h - K u h n -  
Tucker  vertex of 1) for problem (GP) ,  and hence every local minimum of q~ over 
l I  (since all local minima must occur at vertices of l l) ,  will be found using the 
above local search procedure.  Hence,  for a large enough sample of random search 
directions, the global minimum vertex v* will be found 

T H E O R E M  3. I f  the search directions u~, u 2, . . . ,  u u are chosen from a uniform 
distribution over R", then as N--> 0% every v i ~ K, for i = 1 , . . .  , K, will be found 
with probability 1. 

Proof. For  i = 1 . . . . .  K, let 0~ denote the probability that the K a r u s h - K u h n -  
Tucker  vertex v, is found by the local search procedure starting with some 
uniformly distributed random search direction. Hence,  the probability that v, is 
found at least once by the local search procedure using N uniformly distributed 
random search directions is 1 -  ( 1 -  0~) u. Hence as N-->% the K a r u s h - K u h n -  
Tucker  vertex v~ will be found with probability 

lim (1 - (1 - Oi) N) : 1 
N - - - >  

since 0 < 0 i (by Theorem 2). [] 

Clearly, the repeated application of this local search procedure can be terminated 
as soon as all of the K a r u s h - K u h n - T u c k e r  vertices v E K have been discovered. 
Unfortunately,  the number  of such vertices K is unknown. Hence,  for a practical 
implementation of the method,  a reliable estimate of the number  of distinct 
K a r u s h - K u h n - T u c k e r  vertices K is required. As discussed earlier, only in certain 
pathological cases are the Ka rush -Kuhn-Tucke r  vertices of ~ for problem (GP)  
not  also local minima of q~(x) over I'L Hence,  a reliable estimate of the number  of 
local minima of q~(x) over 1) would also be a reliable estimate of K. This estimate 
is called the optimal Bayesian estimate and is provided by the following theorem 

due to Boender  and Rinnooy Kan (1987). 

T H E O R E M  4. Let oJ be the number of different observed local minima obtained 
as a result o f  performing N uniformly distributed random local searches. Then the 
optimal Bayesian estimate o f  the number of  local minima is given, for N >! w + 3, 
by 

w ( U -  1) 
N -  o J - 2  " 

Proof. See Boender  and Rinnooy Kan (1987). [] 

Byrd et al. (1990) suggest that a practical implementation would terminate the 
algorithm when this estimate exceeds ¢o by less than 0.5. More generally, the 
algorithm can be terminated when 
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t o ( N -  1) 
N - t o - 2  

for some 0 < ~ < 1. The right hand side of this expression can be rewritten in the 
form 

to2 -I- to 
N ~ > ~ + t o + 2 .  

6 

Based on these previous theorems, we can present an algorithm for obtaining a 
stochastic solution to problem (OP). I f  P represents the number of available 
processors, then this procedure is as follows: 

StochasticAlg(~, O, 8, P): 
1. Find a feasible vertex v E ~ .  

Set v (I) := v(2): . . . .  j : =  v (P):= v. 

Set to :=0 ,  N : = 0 ,  and K : = O .  
For i := 1, 2 , . . . ,  P (in parallel) do steps (2) through (10): 

2. Pick a random vector u (i) E R n. 

Se t j i  :=1  a n d N : = N + l .  
3. Starting from vertex v (1) solve the linear program 

min u ° )'x 
xE~ 

to get the vertex z(0 0. 
4. Starting from vertex z~i) 1 solve the linear program 

min Vq(z~i) , ) ' ( x -  z (i) 
x{El~ t l i  - 1 1  

to get the vertex z~i). 
5. If ~(z~ )) ~ ~0(z~'l)_~) then set Ji := Ji + 1 and go to step (4). 

6. Set v (i) := z~i). 
_(i)~ 7. I f  K %  K U { z ~  )} then set K : = K U { ~ j l  f and t o : = t o + l .  

8. If N <  w + 3 then go to step (2). 
9. If N < ( t o  2 + to)~6 + to + 2  then go to step (2). 

10. Stop all processors (i = 1, 2 , . . . ,  P)  and set ¢* := min{~p(z) : z ~ K}. 

In the above algorithm, the set K represents the set of all Karush-Kuhn-Tucker  
vertices found by the local search procedure, to = I K I, and N is the number of 
random search directions. 

3. Computational Testing 

Because steps (2) through (10) can all be done in parallel with only a minimal 
amount  of communication between processors (the sharing of the set of local 
minima K, the number of local searches N, and the number of local minima o~), 
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we would expect the speedup obtained by this parallel algorithm over its 
sequential version (i.e., P =  1) to be nearly linear for a particular problem 
instance. In fact, because this problem and its implementation is so similar to the 
class of problems discussed in Phillips and Rosen (1989), we would expect certain 
problem instances to produce superlinear speedups and that on the "average" 
(taken over a large number of problems) the speedup obtained would be linear. 
For more details on this sort of behavior, see Phillips and Rosen (1989). 

All computational results in the following sections were obtained on a Cray 
X-MP EA/464 with the number of processors P set to 4 (hence, unless otherwise 
specified, all times reported are "wall clock seconds"), and in all of the tests 
cited, a tolerance of 8 = 0.5 was used in step (9), the termination criteria. The 
implementation of this method required that the set K satisfy I K I ~  < 400. If a 
problem with more than 400 local minima was attempted, then that problem was 
halted when to reached 400 and the "best" local minimum found so far was 
reported. Clearly, since the stopping criteria was not satisfied when the algorithm 
was stopped with to = 400, this local minimum is not necessarily the global 
minimum. 

Note that for to = 400, the number of local searches N required for termination, 
according to Theorem 4, is 321,202. Each of these local searches involves the 
solution of a series of related linear programs. Based on the computational results 
presented in the following sections, the number of linear programs solved for each 
local search has been observed to be about four or five, and the number of pivot 
steps required for each linear program is also around four or five. Finally, it has 
been observed that the average solution time (in CPU seconds) required per  local 

search can be approximated by the function (valid at least for 10 ~< n m ~< 40) 

1 
f ( m ,  n) - 25000 (m. n - 50). 

The algorithm was tested on a small number of example problems found in the 
literature (Pardalos and Floudas 1990; Winston 1987), and also on over 200 
randomly generated problems. In either case, three different classes of functions 
were used to test the method: quadratic, exponential, and "fixed charge" type 
functions. An example of the output provided by the algorithm is provided in 
Appendix A for the concave quadratic test problem 2.1 from Pardalos and 
Floudas (1990). 

3.1. QUADRATIC FUNCTIONS 

The first class of functions consisted of concave quadratic functions in separable 
form. The example problems chosen were problems 2.1, 2.2, 2.3, and 2.6 from 
Pardalos and Floudas (1990). The algorithm solved all four problems, obtaining 
the same global minima that they report. The most difficult test problem (in terms 
of the number of local minima and, hence, total solution time required) in their 
collection was problem number 2.6 with to = 73. The solution to this problem 
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required 7.1 seconds (28.4 CPU seconds), N = 10879 local searches, and a total of 
32057 linear programs. 

The  concave quadratic functions which were randomly generated had the 

following form: 

,~(x) = ~ ~ i ( x i -  ~i)2 
i=1 

where u is the unconstrained global maximum of ~b(x), and ~g < 0  for i = 
1 , . . . ,  n. Two sets of data were generated for this type of problem: the first set 
required that u E ~ ,  while the second made no restriction on u. For  the set of 
problems with u E 12, five problems of each size with values of m and n ranging 
between 10 and 30 were tested. A summary of the results is presented in Table I 
where the average solution time (in seconds) is displayed as a function of the 
problem dimensions m and n. For each set of problems of the same size, the 
number  of problems that were successfully solved (and hence, the number of 
problems used to compute the average solution time) is given in parentheses. If 
no problems of a given size were successfully solved, i.e., each of the problems 
exceeded the limit of 400 enforced on I K I, then the solution time is reported as 
(since the Bayesian stopping rule was not satisfied at the time the algorithm was 
stopped).  If no problems of a given size were attempted, then the corresponding 
entry in the table contains " N A "  (none attempted).  According to Table I, for 
randomly generated concave quadratic functions with u E f~, a practical limit on 
m and n would require that m + n be no larger than about 30. 

According to the Bayesian stopping rule of Theorem 4, the number of local 
searches N should vary as the square of the number  of local minima o~. Figure 1 
confirms this prediction by plotting the "wall clock solution t ime" against number 
of local minima o) for the concave quadratic problems (with u ~ fZ) of size m = 10 
and n = 10. The quadratic function which best fits the computational data in the 
least squares sense is also shown. In fact, similar results are obtained for the 

remaining problems of the other  sizes tested. 
For  the set of problems with no restriction on the location of the global 

maximum u, the results indicate that the practical limit on m and n is somewhat 
larger, and the computation time required to obtain the global optimum, for 
problems of the same size, is significantly less when u is unrestricted than when 
u ~ g~. As before,  five problems of each size with values of m and n ranging 
between 10 and 40 were tested. A summary of the results is presented in Table II. 

Table I. Average solution time in seconds (and number of problems solved) 
for randomly generated concave quadratic problems with u E l~ 

m\n 10 20 30 

10 1.4(5) 113.0(5) ~(0) 
20 2.7 (5) ~(0) NA 
30 1.0 (5) NA NA 
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Fig. 1. Time vs number of local minima (oJ) for randomly generated concave quadratic 
problems with m = 10, n = 10, and u E f l .  

Table II. Average solution time in seconds (and number of problems solved) 
for randomly generated concave quadratic problems with no restriction on u 

m \ n  10 20 30 40 

10 1.2 (5) 51.5 (5) 488.2 (2) ~(0) 
20 0.6 (5) 462.1 (5) 604.3 (2) NA 
30 0.1 (5) 141.6 (5) NA NA 
40 0.1 (5) NA NA NA 

According to Table  II ,  for randomly generated concave quadratic functions with 

no restriction on u, a practical limit on m and n would require that m + n be no 
larger than about  40 or 50. 

As in the case of Figure 1, Figure 2 displays the relationship between the "wall 
clock solution t ime"  and the number  of  local minima to for the concave quadratic 
p roblems (with no restriction on the global max imum u) of size m = 10 and 

n = 10. The  quadratic function which best fits the computat ional  data in the least 
squares sense is also shown, and again, similar results are obtained for the 

remaining problems of the other  sizes tested. 
Finally, Figure 3 displays the relationship between the number  of local w and 

the p rob lem dimension n, for randomly generated concave quadratic problems 

with m = 10. The  function f~nt is the quadratic function which best fits the 
computa t ional  data in the least squares sense for the case when u @ ~ .  Similarly, 
funr is the quadrat ic  function which best fits the computat ional  data  in the least 
squares  sense for the case when u is unrestricted. According to Figure 3, for a 
given rn and n, problems with ~, E l-I have more  local minima than do problems 
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Fig. 2. Time vs number of local minima (co) for randomly generated concave quadratic 

problems with m = 10, n = 10, and no restriction on P. 

with u unrestricted. This explains why, for a given rn and n, the concave quadratic 
p roblems with u E 12 are more  difficult than the corresponding concave quadratic 
p roblems with u unrestricted. In both cases, based on the data collected for 
p roblems of this size and type, the number  of local minima co tends to grow as the 

square of  the number  of nonlinear variables n. 

J 
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2 0 0 0  

1 0 0 0  

fint(n) = 0.61 n 2 - 3.78 n + 6.6 

. 3 8 n ~  28.8 

20 40 60 80 100 
Fig. 3. N u m b e r  of  local minima (co) vs problem dimension (n) for randomly generated 
concave quadrat ic  problems with m = 10. 
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3.2. EXPONENTIAL FUNCTIONS 

The  second class of  functions were randomly generated concave exponential  
functions of  the following form: 

q~(x) = ~ Aie c'x 
i = 1  

where  c E R  n satisfies ci~>0 for i = l  . . . . .  n, and A i < 0  for i = 1 , . . .  , n .  No 

example  problems f rom the li terature could be found which fit this form, although 
previous work by Rosen and van Vliet (1987) tested a limited number  of  easier 
p rob lems  (also randomly generated)  of  this same type. Results f rom a prel iminary 
version of the algorithm presented in that paper  are provided for both  an 
implementa t ion  on the Cray 2 and the NCUBE-7  hypercube.  The largest of the 
exponent ia l  problems solved with that  implementa t ion involved rn = 10, n = 50, 

and s = 8. Tha t  p rob lem had to = 14 and required 18.5 seconds wall clocktime on 

the Cray 2 (using P = 4 processors). For  problems of this same size using the 
current  implementa t ion ,  the average number  of  local minima (for five problems) 

was to = 16.2 and the average solution t ime was 4.8 seconds on the Cray X-MP 
EA/464 .  

This category of functions tended to be the easiest class tested,  due to the 
relatively small number  of local minima present  for each problem.  In all, sixty 
p rob lems  of various sizes were generated,  and all were solved. The  smallest of  the 
p rob lems  tested had dimensions m = 20, n = 20, and s = 4, while the largest had 
m = 40, n = 80, and s = 8. A s u m m a r y  of the results is presented in Tables I I I  and 
IV  where  the average solution time (in seconds) is displayed as a function of the 
p rob lem dimensions m and n. 

3.3. FIXED CHARGE FUNCTIONS 

Finally, the third class of  functions were randomly generated concave exponential  
functions in separable  form. These functions were chosen because they can be 

Table III. Average solution time in seconds (and number of problems solved) 
for randomly generated exponential problems with s = 4 

m\n 20 40 80 

20 0.4 (5) 1.0 (5) 1.9 (5) 
40 0.3 (5) 1.3 (5) 4.2 (5) 

Table IV. Average solution time in seconds (and number of problems solved) 
for randomly generated exponential problems with s = 8 

rn\n 20 40 80 

20 0.3 (5) 5.8 (5) 9.9 (5) 
40 0.4 (5) 9.9 (5) 13.4 (5) 
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used to closely approximate functions of the so-called "fixed charge" type. The 
fixed charge problem is 

m i n c t x +  ~ f,. 
x E l )  iEJ(x)  

where f ~ = { x E R " : A x < - b ,  x>lO} is a nonempty polytope, f~1>0 for i =  
1 , . . . ,  n, and J(x)= (j:xj >0} .  This is, a fixed charge is incurred for any 
problem variable that has a positive value at the point solution point x, but no 
charge is incurred for problem variables held at 0 value. Problems of this sort are 
very common in practical applications and are usually solved as 0-1 mixed integer 
linear programs. Hence,  it is expected that the number  of local minima may grow 
exponentially with the number of problem variables n. We choose to model these 
problems as concave exponential functions in separable form as follows: 

~(x) = 2 (cixi + fi(1 - e-MXO) 
i=l  

where M is a very large positive constant. 
Two example problems from Winston (1987) were tested. Problem 8.3 (the 

"Gandhi  Cloth Company Problem")  required m = 2 constraints, n = 3 variables, 
had to = 5 local minima, and was solved in 0.02 seconds. Problem 8.4 (the 
"Lockbox  Problem")  required m = 40 constraints, n = 20 variables, had w = 10 
local minima, and was solved in 1.23 seconds. In both cases, the solutions 
obtained are the same as those reported by Winston. 

As with the class of quadratic functions, two sets of data were constructed for 
the randomly generated fixed charge problems: the first set required that the 
linear costs satisfy c <~ 0, while the second set required c i> 0 and 0 ~ fL 

A summary of results for the case when c ~< 0 is presented in Table V. 
According to Table V, for randomly generated fixed charge functions with c ~< 0, a 
practical limit on m and n would require that rn + n be no larger than about 20 or 
25. Figure 4 shows that, like the quadratic problems presented earlier, the 
solution time tends to grow as the square of the number of local minima to. 

Similarly, Table VI presents the results for the case when c ~ 0 and 0 # IL 
Clearly, for problems of the same size, this form of fixed charge problem (c/> 0) 
tends to be much easier (even though 0 ~ ~ )  than the case c ~< 0 because there are 
far fewer local minima to consider. Unfortunately,  due to the highly exponential 
nature of the fixed charge problem, the practical limits on m and n do not change 

Table V. Average solution time in seconds (and number of problems solved) 
for randomly generated fixed charge problems with c ~< 0 

m \ n  10 15 20 

10 43.6(5) 206.7(1) ~(0) 
15 280.9 (4) ~(0) NA 
20 630.8 (4) NA NA 
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Fig. 4. Time vs number of local minima (w) for the randomly generated fixed charge with 
m = 15, n = 10, c/>0, and 0 e f t .  

Table VI. Average solution time in seconds (and number of problems solved) 
for randomly generated fixed charge problems with c/> 0 and 0J~¢O 

m \ n  10 15 20 

10 0.5(5) 112.5(5) ~(0) 
15 2.7(5) 352.7(4) NA 
20 0.7(5) 317.3(4) NA 

significantly. In this case, the limit would require that  rn + n be no larger than 
about  25 or 30. For  each problem tested with n = 15 and m = 15 or 20, the 
n u m b e r  of  local minima exceeded 300. Hence,  no problems with n = 20 and 
m = 15 or 20 were a t t empted  since the number  of local minima would very likely 

exceed 400. 

4. Conclusions 

Table  V I I  presents a sample of  the results obtained for 20 randomly genera ted 
concave quadratic problems with m = 10, n = 10, and v E fL In this table,  N* 
represents  the number  local searches (i.e. trials) needed to obtain x*, and hence 
N * / N  is the fraction of local searches required before x* was discovered. In 
addition, if x* was the (~o*)th local minimum found, then ~o*/oJ is the fraction of 
local minima found prior  to x*. It  is clear f rom this table that the global min imum 
vertex x* is found by the stochastic algorithm very early in the sequence of local 
searches. In fact, on the average,  only 0.55% of the total number  of local searches 

are required to obtain the eventual global minimum x*. The  remaining 99.45% of 
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Table VII. Selected solution statistics for 20 randomly generated concave quadratic prob- 
lems with m = 10, n = 10, and v ~ 1) 

Problem# N* N o~ oJ* (N* IN)% (w* /w)% 

1 3 2851 37 3 0.11 8.11 
2 39 4006 44 13 0.97 29.54 
3 1 497 15 1 0.20 6.67 
4 8 2416 34 7 0.33 20,59 
5 3 436 14 2 0.69 14.28 
6 1 562 16 1 0.18 6.25 
7 1 1771 29 1 0.06 3.45 
8 23 12091 77 14 O. 19 18.18 
9 1 2017 31 1 0.05 3.22 

10 2 1541 27 2 0.13 7.41 
11 2 2851 37 2 0.07 5.40 
12 8 947 21 5 0.84 23.81 
13 4 947 21 4 0.42 19.05 
14 2 781 19 2 0.26 10,53 
15 4 1892 30 3 0.21 10.00 
16 3 3487 41 2 0.09 4.88 
17 37 2279 33 15 1.62 45.45 
18 18 497 15 10 3.62 66.67 
19 13 6671 57 9 0.19 15.79 
20 24 3004 38 16 0.80 42.10 

Means 9.8 2577.2 31.8 5.6 0.55 18.07 

the local searches are required to find the other local minima and satisfy the 
Bayesian stopping rule. Furthermore, the global minimum x* is, again on the 
average, found among the first 18% of the total number of local minima found. 

In conclusion, the computational results obtained seem to indicate that the 
randomly generated fixed c~arge problems with c ~ 0, and the randomly gener- 
ated concave quadratic problems with 1, E 12 are among the most difficult test 
problems available. In addition, because the stochastic method does not take 
advantage of any special problem structure, this method is likely to be useful in 
only two types of problem instances: if it desired that all (or at least a large 
number) of the local minima for a given problem be found, then this is the fastest 
method available to date; alternatively, if there is no known structure to the 
problem and it is suspected that only a moderate number (e.g. ~<100) of local 
minima exist, then this method can be applied with great success. On the other 
hand, for problems in which there is some special structure (e.g. separability of 
the nonlinear function ~(x)), or for problems in which the number of local 
minima is suspected to be large, other deterministic methods (see Phillips and 
Rosen 1990) would be preferable. 
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Appendix A 

The following is typical of the output provided by the algorithm. The particular 

results shown here were obtained on the Cray X-MP EA/464  (with P = 4) for the 
concave quadratic test problem 2.1 from Pardalos and Floudas (1990). 

Problem Number  2.1 - Problem Dimensions: m = 6 n = 5 

- G l o b a l  M i n i m u m  v e r t e x  - 

x[1] = 1.000 

x[2] = 1.000 

x[31 = o .ooo 

x[41 = 1.ooo 

x[5] = o .ooo 

-Global Minimum Function Value = -17.000 

Number  of Local Minima = 34 

Number  of Trials = 2416 
Number  of Trials Since Final Local Min Found = 1794 

Global Minimum was Local Minimum #5  
Most Frequently Found was Local Minimum #20  (148 times, value = -13 .500)  

Global Minimum was Found 89 times 

Global Minimum was Found on Trial Number  9 

Average Local Minimum Function Value = -9 .620  
Range on Local Minimum Function Values = 17.000 

CPU Time = 1.755 secs 

Wall Clock Time = 0.442 secs 

Random Number  Seed Value = -422436315054 

Total Number  of Pivots --- 7190 
Total Number  of LP Problems = 4971 

Average Pivots /LP Problem = 1.45 
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